bet365体育在线-bet365游戏论坛网_凱旋門百家乐娱乐城_全讯网社区 (中国)·官方网站

國(境)外文教專家系列講座一百六十一講-比薩大學Dario A. Bini教授:Solving structured matrix equations encountered in the analysis of stochastic processes

發布時間:2022-05-18 閱讀: 64 添加: 管理員

一、主講人介紹:Dario A. Bini

Dario A. Bini,意大利比薩大學數學院教授,主要從事馬爾可夫鏈及排隊問題數值解、矩陣方程數值解法、結構化矩陣計算、幾何矩陣均值及其算法。Dario A. Bini教授在Numerische MathematikMathematics of ComputationSIAM Journal on Scientific ComputingSIAM Journal on Matrix Analysis and ApplicationsIMA Journal of Numerical AnalysisNumerical Linear Algebra with Applications等計算數學國際頂尖和權威期刊發表論文200余篇,出版Numerical Solution of Algebraic Riccati EquationsNumerical Methods for Structured Markov Chains等計算數學論著7余篇。曾擔任SIAM J. Matrix Analysis Appl.Electronic Transactions on Numerical AnalysisElectronic Journal of Linear Algebra等計算數學國際頂尖以及權威期刊編委。

 

二、講座信息

講座摘要:

We consider the problem of solving matrix equations of the kind A_1 X^2+A_0X+A_(-1)=X , where the coefficients  A_r ,r=-1,0,1, are matrices having specific structures, and X is the unknown matrix. The solution of interest is the one that has some minimality properties, say, it has a minimal spectral radius or has nonnegative entries with minimal value. This kind of problem is encountered in the solution of Quasi-Birth-Death processes, a general framework that models real-world problems in terms of Markov chains. In this talk, after presenting and motivating the interest of this class of equations, we investigate some computational issues encountered in their solution. For this class of problems, the coefficients A_r ,r=-1,0,1 ,  are semi-infinite Quasi-Toeplitz (QT) matrices. We give conditions under which the class of QT matrices is a Banach algebra, that is, a vector space closed under multiplication, endowed with a norm that makes it a Banach space. We give conditions under which the sought solution, say the minimal nonnegative one, is still a QT matrix, and describe and analyze  algorithms for its effective computation. Finally, by means of some numerical experiments performed with the CQT Matlab Toolbox, we show the effectiveness of our algorithms

講座時間:526日(星期四)13:30-14:30

騰訊會議號:142-518-059

 

歡迎大家積極參加!

 

 

國際合作與交流處

數學科學學院  

2022518  


? 校址:青島市嶗山區松嶺路238號 郵編:266100 魯ICP備05002467號-1? 版權所有?中國海洋大學 ?
百家乐纯数字玩法| 全讯网百导| 百家乐下注技术| 香港六合彩报码| 百家乐如何看面| 八大胜娱乐城| 百家乐游戏机路法| 池州市| 百家乐投注网中国| 百家乐官网园搏彩论坛| 免费百家乐计划工具| 百家乐官网最新产品| 博彩网址| 百家乐只打闲打法| MG百家乐官网大转轮| 华人博彩| 利都百家乐国际赌场娱乐网规则 | 百家乐轮盘桌| 百家乐官网趋势方向| 现场百家乐能赢吗| 百人百家乐官网软件供应| 百家乐资深 | 百家乐入庄闲概率| 百家乐官网全讯网娱乐城| 大发888娱乐场下载客户端| 百家乐官网德州| 百家乐官网视频交友| 威尼斯人娱乐网最新地址| 百家乐官网PK| 财神真人娱乐城| 宁波水果机遥控器| r百家乐娱乐下载| 百家乐官网娱乐网真人娱乐网| 报价| 雁荡棋牌游戏| 百家乐怎样投注好| AG百家乐官网大转轮| 求购百家乐官网程序| 足球开户网| 大发888真钱娱乐网| 百家乐皇室百家乐的玩法技巧和规则 |