bet365体育在线-bet365游戏论坛网_凱旋門百家乐娱乐城_全讯网社区 (中国)·官方网站

國(境)外文教專家系列講座一百六十一講-比薩大學Dario A. Bini教授:Solving structured matrix equations encountered in the analysis of stochastic processes

發布時間:2022-05-18 閱讀: 64 添加: 管理員

一、主講人介紹:Dario A. Bini

Dario A. Bini,意大利比薩大學數學院教授,主要從事馬爾可夫鏈及排隊問題數值解、矩陣方程數值解法、結構化矩陣計算、幾何矩陣均值及其算法。Dario A. Bini教授在Numerische MathematikMathematics of ComputationSIAM Journal on Scientific ComputingSIAM Journal on Matrix Analysis and ApplicationsIMA Journal of Numerical AnalysisNumerical Linear Algebra with Applications等計算數學國際頂尖和權威期刊發表論文200余篇,出版Numerical Solution of Algebraic Riccati EquationsNumerical Methods for Structured Markov Chains等計算數學論著7余篇。曾擔任SIAM J. Matrix Analysis Appl.Electronic Transactions on Numerical AnalysisElectronic Journal of Linear Algebra等計算數學國際頂尖以及權威期刊編委。

 

二、講座信息

講座摘要:

We consider the problem of solving matrix equations of the kind A_1 X^2+A_0X+A_(-1)=X , where the coefficients  A_r ,r=-1,0,1, are matrices having specific structures, and X is the unknown matrix. The solution of interest is the one that has some minimality properties, say, it has a minimal spectral radius or has nonnegative entries with minimal value. This kind of problem is encountered in the solution of Quasi-Birth-Death processes, a general framework that models real-world problems in terms of Markov chains. In this talk, after presenting and motivating the interest of this class of equations, we investigate some computational issues encountered in their solution. For this class of problems, the coefficients A_r ,r=-1,0,1 ,  are semi-infinite Quasi-Toeplitz (QT) matrices. We give conditions under which the class of QT matrices is a Banach algebra, that is, a vector space closed under multiplication, endowed with a norm that makes it a Banach space. We give conditions under which the sought solution, say the minimal nonnegative one, is still a QT matrix, and describe and analyze  algorithms for its effective computation. Finally, by means of some numerical experiments performed with the CQT Matlab Toolbox, we show the effectiveness of our algorithms

講座時間:526日(星期四)13:30-14:30

騰訊會議號:142-518-059

 

歡迎大家積極參加!

 

 

國際合作與交流處

數學科學學院  

2022518  


? 校址:青島市嶗山區松嶺路238號 郵編:266100 魯ICP備05002467號-1? 版權所有?中國海洋大學 ?
汇丰百家乐的玩法技巧和规则| 至尊百家乐规则| 德州市| 百家乐官网看图赢钱| 大发888下载专区| 24山吉凶八卦图| 188金宝博开户| 属马的和属猴的在一起做生意好吗| 拉斯维加斯娱乐| 属鸡与属羊做生意| 威尼斯人娱乐城| 英皇百家乐官网的玩法技巧和规则| 德州扑克教程| 百家乐优博娱乐城| 百家乐官网游戏公司| 免佣百家乐的玩法| 百家乐官网双人操作分析仪| 五张百家乐官网的玩法技巧和规则 | 八大胜娱乐| 澳门百家乐哪家信誉最好| 百家乐官网高额投注| 顶级赌场官方客户端下载| 环球百家乐现金网| 百家乐官网如何投注技巧| 巴比伦百家乐娱乐城| 百家乐官网高手打| 百家乐官网公式球打法| 百家乐在线游戏| 都坊百家乐的玩法技巧和规则| 金世豪百家乐官网的玩法技巧和规则 | 做生意门朝山| 百家乐官网最低压多少| 真钱娱乐场游戏| 任我赢百家乐自动投注分析系统| 广州百家乐官网牌具公司| 德兴市| 百利宫娱乐城官方网| 免费百家乐缩水| 百家乐vshow| 百家乐变牌桌| 百家乐最长的缆|